VIDE0_Baseline_noLaser_compressed.jpg
VIDE0_Baseline_noLaser_compressed.jpg

RESEARCH


SCROLL DOWN

RESEARCH


Research

The lab will open in September of 2017 at the Rowland Institute at Harvard

Executing successful movements requires us to predict the consequences of our actions. It is believed that our brains build internal models of our body and the environment in order to simulate the outcomes of actions. 

Due to the constant changes in our body and environment (for instance, those due to fatigue,  tool-use, or disease) these models require constant re-calibration, called motor adaptation, to keep us moving in predictable ways.

Where in the brain these models reside, how they are formed, and how they are updated following bodily or environmental changes remains unclear. 

The goal of the laboratory is to reverse engineer the neural circuits that drive adaptive motor behavior. We hope that by understanding the neural basis of adaptive motor control we can open new avenues in therapeutic research for neurological disease and provide fundamental insights into brain function.  

The tools and technology

Novel mouse paradigms for studying adaptive motor control

We have developed a set of skilled motor tasks where mice can learn from a dynamically changing sensory landscape. By combining concepts from optimal motor control with the power of the mouse's genetics and accessibility, our lab aims to uncover fundamental principles that guide motor adaptation, learning, and control.

We are using the latest techniques in 2-photon and deep brain imaging, optogenetics, chemogenetics, anatomical tracing, electrophysiology, computational modeling and robotics to better understand how multiple areas interact to facilitate adaptive motor control. 

 

We are looking for post-doctoral fellows

News


News

News


News

Feb 2017

First motor behavior paper accepted - stay tuned!


January 2017

Please consider joining! http://www2.rowland.harvard.edu/employment

come see our poster at COSYNE 2017
Somatosensory cortex plays an essential role in forelimb motor adaptation in mice
Amoroso, M.W., Mathis, A., Uchida, N. (2017). Cosyne Abstracts 2017, Salt Lake City USA


December 2016

It's offical! The lab will open at the Rowland Sept 1st!